skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pradkin, Yuri"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Domain Name System (DNS) is an essential service for the Internet which maps host names to IP addresses. The DNS Root Sever System operates the top of this namespace. RIPE Atlas observes DNS from more than 11k vantage points (VPs) around the world, reporting the reliability of the DNS Root Server System in DNSmon. DNSmon shows that loss rates for queries to the DNS Root are nearly 10\% for IPv6, much higher than the approximately 2\% loss seen for IPv4. Although IPv6 is ``new,'' as an operational protocol available to a third of Internet users, it ought to be just as reliable as IPv4. We examine this difference at a finer granularity by investigating loss at individual VPs. We confirm that specific VPs are the source of this difference and identify two root causes: VP \emph{islands} with routing problems at the edge which leave them unable to access IPv6 outside their LAN, and VP \emph{peninsulas} which indicate routing problems in the core of the network. These problems account for most of the loss and nearly all of the difference between IPv4 and IPv6 query loss rates. Islands account for most of the loss (half of IPv4 failures and 5/6ths of IPv6 failures), and we suggest these measurement devices should be filtered out to get a more accurate picture of loss rates. Peninsulas account for the main differences between root identifiers, suggesting routing disagreements root operators need to address. We believe that filtering out both of these known problems provides a better measure of underlying network anomalies and loss and will result in more actionable alerts. 
    more » « less
  2. The Covid-19 pandemic disrupted the world as businesses and schools shifted to work-from-home (WFH), and comprehensive maps have helped visualize how those policies changed over time and in different places. We recently developed algorithms that infer the onset of WFH based on changes in observed Internet usage. Measurements of WFH are important to evaluate how effectively policies are implemented and followed, or to confirm policies in countries with less transparent journalism. This paper describes a web-based visualization system for measurements of Covid-19-induced WFH. We build on a web-based world map, showing a geographic grid of observations about WFH\@. We extend typical map interaction (zoom and pan, plus animation over time) with two new forms of pop-up information that allow users to drill-down to investigate our underlying data. We use sparklines to show changes over the first 6 months of 2020 for a given location, supporting identification and navigation to hot spots. Alternatively, users can report particular networks (Internet Service Providers) that show WFH on a given day. We show that these tools help us relate our observations to news reports of Covid-19-induced changes and, in some cases, lockdowns due to other causes. Our visualization is publicly available at \url{https://covid.ant.isi.edu}, as is our underlying data. 
    more » « less